

SUPER ELASTIC COUPLING FOR SUGAR MILLS

ENGLISH

SYSTEM

At a glance

TECHNICAL DATA

Product application: Which feature for which coupling

SERVICE

Explanation of the technical data Contact

CENTAFLEX-FO AT A GLANCE

CENTAFLEX-FO - a highly torsionally elastic coupling that provides an innovative, original solution and unparalleled design specifically for sugar mill applications.

CENTAFLEX-FO couplings unique patented design is permits a wide degree of radial, axial and angular misalignment, with up to 30 mm radial.

The elastic elements of the CENTAFLEX-FO permit a wide torsion angle that absorbs the vibrations and shocks that result from the continuous torque variations of the mill, thus avoids wear to the gears, hubs and shafts.

The coupling design transmits torque without backlash and eliminates wear to the driven hub and shaft.

CENTAFLEX-FO coupling allows the mill to be reversed for a short period of time in case of jamming.

Features

High flexibility in all directions High adaptability to torsional flexibility High design flexibility Backlash and wear free

Areas of aplication

Sugar cane Mill

Torque range

1200 to 4400 kNm

LEADING BY INNOVATION

TORSIONAL FLEXIBILITY

The rubber elements for the

CENTAFLEX-FO are availa-

ble in different degrees of

This enables the torsional

flexibility of the couplings

to be adapted with utmost

variability to the working

torque of the sugar mill.

Torsional vibrations and

impacts are reliably dam-

Shore hardness.

pened.

COMPENSATION OF MISALIGNAMENT

CLAMP HUB

MAINTENCE

The couplings of the CENTAFLEX-FO series compensate for significant misalignments in axial, radial and angular directions.

Superior high allowable radial misalignment of up to 30 mm at permanent running is the distinguish mark of this coupling. The coupling design transmits torque without backlash and eliminates wear to the driven hub and shaft

The unique design of the clamping hub allows the driven hub to be compressed and provides a very strong backlash free connection between the driven hub and driven shaft, avoiding wear, and results in excellent benefits over time. Axial exchange of elastic elements reduced time expended, extremely simple, and without displacement of of equipment or use of special tools.

QUALITY

When the going gets tough, quality is priceless. With an exemplary Quality Management, CENTA ensures products that withstand the roughest assignments. CENTA's coupling systems are more than the sum of their parts. CENTA entertains the vision of intelligent products that meet the hig-

hest requirements in terms

of design and quality.

TECHNICAL DATA

TECHNICAL	DATA	DIMENSIONS					
Size 19	Page 6	Size 19	Page 9				
Size 22	Page 7	Size 22	Page 9				
Size 26	Page 8	Size 26	Page 9				

CF-FO-EN-17 | PAGE 5 | PUBLISHED FEBRUARY 2017 | →CHECK FOR UPDATES

TECHNICAL DATA		\downarrow SIZE 19	\rightarrow SIZE	ES 22-26			
1	3	4	7	9	10	12	14
Mill	Nominal	Maximum	Dynamic torsional	Speed	Permissible	Permissible	Permissible
Size	torque	torque	stiffness		Axial displacement	Radial displacement	Angular displacement
	Τκν	Ткмах	Стdyn	nmax	ΔKa	ΔKr	ΔKw
	[kNm]	[kNm]	[kNm/rad]	[rpm]	[mm]	[mm]	[°]
	-	-					-
39″x66″	1200	2400	19100	13	±30	±25	1°
39″x67″	1200	2400	19100	13	±30	±25	1°
42″x78″	1700	3400	26600	13	±30	±25	1°

*primary values

TECHNICAL DATA		\downarrow SIZE 22	\rightarrow size	S 26			
1	3	4	7	9	10	12	14
Mill Size	Nominal torque	Maximum torque	Dynamic torsional stiffness	Speed	Permissible Axial displacement	Permissible Radial displacement	Permissible Angular displacement
	Τ _{κΝ} [kNm]	Ткмах [kNm]	C _{Tdyn} [kNm/rad]	n _{max} [rpm]	ΔKa [mm]	ΔKr [mm]	ΔKw [°]
45″x78″	1800	3600	28000	10	±30	±25	1°
46″x84″	2200	4400	34400	10	±30	±25	1°
46′x84′	2200	4400	34400	10	±30	±25	1°
46″x86″	2300	4600	39000	10	±30	±25	1°
46"x90"	2800	5600	44700	10	±30	±25	1°

*primary values

TECHNICAL DATA		\downarrow SIZE 26	← SIZ	ES 19-22				
1	3	4	7	9	10	12	14	
Mill	Nominal	Maximum	Dynamic torsional	Speed	Permissible	Permissible	Permissible	
Size	torque	torque	stiffness		Axial	Radial	Angular	
					displacement	displacement	displacement	
	Τκν	Ткмах	CTdyn	C _{Tdyn} n _{max}		ΔKr	ΔKw	
	[kNm]	[kNm]	[kNm/rad]	[rpm]	[mm]	[mm]	[°]	
54″x90″	3200	6400	48600	8	±30	±25	1°	
54″x96″	3400	6800	51600	8	±30	±25	1°	
57"x100"	3900	7800	56800	8	±30	±25	1°	
59″x104″	4400	8800	64000	8	±30	±25	1°	

*primary values

DIMENSIONS ψ SIZES 19-22-26												
Size	Dimensions											
	А	В	D1max	D2max	Da	Dв	Dc	Lı	L2	Lз	Nı	N2
19	735	190	490	490	1900	1790	1050	*	*	*	860	860

19	/55	190	750	490	1500	1750	1050				000	000
22	870	225	600	600	2200	2110	1240	*	*	*	1000	1000
26	1155	275	700	700	2600	2570	1510	*	*	*	1200	1200

* acc. customer specification Dimensions N_1 and N_2 may vary according final bore dimension Mass moments of inertia and masses on request

CENTAFLEX-FO EXPLANATION OF TCHNICAL DATA

This appendix shows all explanations of the technical data for all CENTA products. **the green marked explanations are relevant for this catalog:**

1 Size	Page 11
2 Rubber quality	Page 11
3 Nominal torque	Page 11
4 Maximum torque	Page 11
5 Continuos vibratory torque	Page 11
6 Permissible power loss	Page 11
7 Dynamic torcional stifness	Page 12
8 Relative damping	Page 12
9 Speed	Page 12
10 Permissible axial displacement	Page 12
11 Axial stifness	Page 13
12 Permissible radial displacement	Page 13
13 Radial stifness	Page 13
14 Permissible angular displacement	Page 13
15 Angular stifness	Page 13

CENTAFLEX-FO

EXPLANATION OF THECHNICAL DATA

EXPLANATION OF THE	CHNICAL DATA			0,4 0,2 0 20 30	40 50 60 70 80 90 °C		
1	2		4	5	6		
Size	Rubber quality Shore A	Maximu [kl	m torque Nm]	Continuous vibratory torque Tĸw [kNm]	Permissible Power Loss P _{KV} [kW]		
This spontaneously selected figure designates the size of the coupling.	This figure indicates the nominal shore hardness of the elastic element. The nominal value and the effective value may deviate within given tole- rance ranges. <u>3</u> Nominal torque	Tkmax This is the torque that may occur occasionally and for a short period up to 1.000 times and may not lead to a substantial temperature rise in the rubber element. In addition the following maximum torques may occur:		Amplitude of the continuously permis- sible periodic torque fluctuation with a basic load up to the value TKN. The frequency of the amplitude has no influence on the permissible conti- nuous vibratory torque. Its main in- fluence on the coupling temperature is taken into consideration in the calcula- tion of the power loss.	Damping of vibrations and displacement results in power loss within the rubber ele- ment. The permissible power loss is the maximum heat (converted damping work into heat), which the rubber element can dissipate con- tinuously to the environment (i.e. without time limit) without the maximum permissi- ble temperature being exceeded. The given permissible power loss refers to		
	Nominal torque torques TκN [kNm] ΔTκmax = Average torque which can be transmitted continuously over the entire speed range. ΔTκmax = ΔTκmax1 = 1,5xTκN ΔTκmax2 ΔTκmax2	$\Delta T_{Kmax} = \begin{cases} Peak tor peak) & f \\ peak \\ 1,8xT_{KN} & switchin \\ \Delta T_{Kmax1} = \\ 1,5xT_{KN} & Tempora \\ \Delta T_{Kmax2} & T_{Kmax0} \\ \Delta T_{Kmax2} = \\ \Delta T_{Kmax2} & Transien \\ 4,5xT_{KN} & ditions (distingtion) \end{cases}$	rque range (peak to petween maximum nimum torque, e.g. g operation. ry peak torque (e.g. chrough resonances). or Tkmax1 may occur times alternating or times swelling. t torque rating for e, extraordinary con- e a short circuite)	Operating torque TBmax [kNm] The maximum operating torque results of TKN and TKW.	an ambient temperature of 30° C. If the coupling is to be operated at a higher ambient temperature, the temperature fac- tor St PKV has to be taken into consideration in the calculation. The coupling can momentarily withstand an increase of the permissible power loss for a short period under certain operation modes (e.g. misfiring). Pkv30 [kW] For a maximum period of 30 minutes the double power loss Pkv30 is permissible. CENTA keeps record of exact parameters for		

nt le-

1,0

0,8 0,6 St PKV

he CENTA keeps record of exact parameters for further operation modes.

EXPLANATION OF THECHNICAL DATA

instructions).

	7	8		9	10		
[Dynamic torsional stiffness	Relative damping		Speed	Permissible axial displacement [mm]		
	C _{Tdyn} [kNm/rad]	Ψ		[min ⁻¹]			
The dynamic torsional stiffness is the relation of the torque to the torsional angle under dynamic loading. The torsional stiffness may be linear or progressive depending on the coupling design and material. The value given for couplings with linear torsional stiffness considers following terms: • Pre-load: 50% of TKN • Amplitude of vibratory torque: 25% of TKN • Amplitude of vibratory torque: 25% of TKN • Ambient temperature: 20°C • Frequency: 10 Hz For couplings with progressive torsional stiffness only the pre-load value changes as stated. The tolerance of the torsional stiffness is ±15% if not stated otherwise. The following influences need to be considered if the torsional stiffness is required for other operating modes:		The relative damping is the relationship of the damping work to the elastic deformation during a cycle of vibration. The larger this value $[\psi]$, the lower is the increase of the continuous vibratory torque within or close to resonance. The tolerance of the relative damping is $\pm 20\%$, if not otherwise stated. The relative damping is reduced at higher temperatures.	Nmax	The maximum speed of the coupling element, which may occur occasionally and for a short period (e.g. overspeed). Nmax The characteristics of mounted parts may require a reduction of the maximum speed (e.g. outer diameter or material of brake-discs).		The continuous permissible axial displacement of the cou- pling. This is the sum of displacement by assembly as well as static and dynamic displacements du- ring operation. The maximum axial displace- ment of the coupling, which may occur occasionally for a	
		Temperature factor $S_t \psi$ has to be taken into consideration in the calculation. The vibration amplitude and frequency only have marginal effect on the relative damping.	Nd	speed of highly flexible cou- pling elements is normally 90% thereof.	∆Ka max	short period (e.g. extreme load). The concurrent occurrence of different kinds of displace- ments is handled in technical documents (displacement dia- grams, data sheets, assembly	

Temperature

Higher temperature reduces the dynamic torsional stiffness.

- Temperature factor St CTdyn has to be taken into consideration in the calculation.
- Frequency of vibration
- Higher frequencies increase the torsional stiffness.
- By experience the dynamic torsional stiffness is 30% higher than the static stiffness. CENTA keeps record of exact parameters.
- Amplitude of vibratory torque

Higher amplitudes reduce the torsional stiffness, therefore small amplitudes result in higher dynamic stiffness. CENTA keeps record of exact parameters.

CF-FO-EN-17 | PAGE 12 | PUBLISHED FEBRUARY 2017 | →CHECK FOR UPDATES

EXPLANATION OF THECHNICAL DATA

11			12		13		14	15		
Axial stiffness [kN/mm]		Perm	Permissible radial displacement [mm]		Radial stiffness [kN/mm]		Permissible angular displacement [<°]		Angular stiffness [kNm/°]	
Ca	The axial stiffness determines the axial reaction force on the input and output sides upon axial displacement.		The continuous permissible radial displacement of the cou- pling. This is the sum of displacement	Cr	The radial stiffness determines the radial reaction force on the input and output sides upon ra- dial displacement.		The continuous permissible an- gular displacement of the cou- pling. This is the sum of displacement	Cw	The angular stiffness deter- mines the restoring bending moment on the input and ou- tput sides upon angular dis-	
Ca dyn	By experience the dynamic sti- ffness is higher than the static one. The factor depends on the coupling series.	by assembly as well as static and dynamic displacements du- ring operation. C The continuous permissible ra- dial displacement depends on the operation speed and may require adjustment (see dia- grams Sn of the coupling se- ries).		Crdyn	Crdyn By experience the dynamic sti- ffness is higher than the static one. The factor depends on the coupling series.		by assembly as well as static and dynamic displacements du- ring operation. The continuous permissible an- gular displacement depends on the operation speed and may require adjustment (see dia- grams Sn of the coupling se- ries).	Cwdyn	By experience the dynamic sti- ffness is higher than the static one. The factor depends on the coupling series.	
		∆Kr max	The maximum radial displa- cement of the coupling, which may occur occasionally and for a short period without conside- ration of the operation speed (e.g. extreme overload). The concurrent occurrence of different kinds of displace- ments is handled in technical documents (displacement dia- grams, data sheets, assembly instructions).			∆Kw max	The maximum angular displa- cement of the coupling, which may occur occasionally and for a short period without conside- ration of the operation speed (e.g. extreme overload). The concurrent occurrence of different kinds of displace- ments is handled in technical documents (displacement dia- grams, data sheets, assembly instructions).			

CENTAFLEX-FO © 2017 by CENTA Antriebe Kirschey GmbH Rev. CF-FO-EN-01-17

1. This catalog supersedes previous editions.

This catalog shows the extent of our coupling range at the time of printing. This program is still being extended with further sizes and series. Any changes due to technological progress are reserved. We reserve the right to amend any dimensions or detail specified or illustrated in this publication without notice and without incurring any obligation to provide such modification to such couplings previously delivered. Please ask for an application drawing and current data before making a detailed coupling selection.

- 2. We would like to draw your attention to the need of preventing accidents or injury. No safety guards are included in our supply.
- 3. TRADEMARKS

CENTA, the CENTA logo, Centacone, CENTADISC, CENTAFIT, Centaflex, CENTALINK, Centalock, Centaloc, Centamax, Centastart, CENTAX and HYFLEX are registered trademarks of CENTA Antriebe Kirschey GmbH in Germany and other countries.

Other product and company names mentioned herein may be trademarks of their respective companies.

4. Torsional responsibility

The responsibility for ensuring the torsional vibration compatibility of the complete drive train, rests with the final as embler. As a component supplier CENTA is not responsible for such calculations, and cannot accept any liability for gear noise/-damage or coupling damage caused by torsional vibrations.

CENTA recommends that a torsional vibration analysis (TVA) is carried out on the complete drive train prior to start up of the machinery.

In general torsional vibration analysis can be undertaken by engine manufacturers, consultants or classicfication societies.

CENTA can assist with such calculations using broad experience in coupling applications and torsional vibration analysis.

- 5. Copyright to this technical dokument is held by CENTA Antriebe Kirschey GmbH.
- 6. The dimensions on the flywheel side of the couplings are based on the specifications given by the purchaser. The responsibility for ensuring dimensional compatibility rests with the assembler of the drive train. CENTA cannot accept liability for interference between the coupling and the flywheel or gearbox or for damage caused by such interference.
- All technical data in this catalog are according to the metric SI system. All dimensions are in mm. All hub dimensions (N, N1 andN2) may vary, depending on the required finished bore. All dimensions for masses (m), inertias (J) and centres of gravity (S) referto the maximum bore diameter.

HEAD OFFICE

CENTA Antriebe Kirschey GmbH

Bergische Strasse 7 42781 Haan/Germany

+49-2129-9120 Phone +49-2129-2790 Fax

info@centa.de www.centa.info CENTA is the leading producer of flexible couplings for rail, industrial, marine and power generating applications. Worldwide.

WWW.CENTA.COM.BR

CENTA couplings are manufactured and distributed in Brazil and South America exclusively by:

CENTA Transmissões Ltda.

R. Dr. José A. C. Bahia, 199 32210-130 - Contagem - MG - Bras

+55-31-3333-5363 Phone +55-31-3333-1046 Phone/Fax

comercial@centa.com.br